

European Novel Imaging Systems for Ion Therapy Imaging secondary particles to improve dose conformality of proton and ion therapy

ENVISION tackles real-time monitoring, quantitative imaging, precise determination of delivered dose, fast feedback for optimal treatment planning, real-time response to moving organs, simulation studies

The Project

ENVISION is a four year funded project with a budget of 6 million Euros.

Launched in 02/2010 and prolonged to 07/2014

16 leading European research centers and industrial partners are coordinated by CERN

Project structure: 5 research work packages

- Time-of-flight in-beam PET (WP2)
- In-beam single particle tomography (WP3)
- Particle therapy in-vivo dosimetry and moving targets (WP4)

- In-vivo dosimetry, treatment planning and clinical relevance (WP5)
- Monte Carlo simulation of in-vivo dosimetry (WP6)

Time-of-flight in-beam PET

Compare technologies for achieving sub-nanosecond TOF resolution Dual-head demonstrator

 \rightarrow Crystal-based TOF-PET \rightarrow RPC-based TOF-PET Simulate a full ibPET system Develop and optimize fast image reconstruction algorithms \rightarrow Achieved TOF resolutions close to 200 ps Improvements in image quality

→ Compton scatter rejection & artifacts reduction

In-beam single particle tomography

Develop and optimize detector systems & reconstruction algorithms for ibSPAT

Develop clinically real-time monitoring methods Feasibility of prompt γ -ray imaging demonstrated Passive system for prompt γ -ray imaging tested \rightarrow Promising results for clinical application Several dedicated Compton camera prototypes developed \rightarrow Active collimation system in progress

Scintillating fibre hodoscope for beam position measurement successfully tested

Monte Carlo simulations and experiments at HIT demonstrated that prompt γ imaging delivers a reliable particle range information

Particle therapy in-vivo dosimetry and moving targets

Assess feasibility and clinical potential of 4D in-vivo dosimetric Imaging analysis systems of motion-compensated scanned ion beams Experimental investigations at GSI (3D MLEM vs 4D MLEM)

- \rightarrow Changes in high activity region due to beam delivery type
- Automated range comparison \rightarrow
- Detection of overranges & underranges \rightarrow Integration of ultrasound tracking system
 - In PET/CT \rightarrow
 - In beam delivery \rightarrow

In-vivo dosimetry, treatment planning and clinical relevance

Development of an automated PT-PET evaluation tool Development and test of purpose built phantoms ion beam dosimetry Software development for PET verification (2 approaches)

 \rightarrow Range comparison algorithm

 \rightarrow Pearson correlation coefficient based evaluation Moving phantom designed and constructed

Monte Carlo simulation of in-vivo dosimetry

MC model development for production of β^+ and prompt Y emission Simulation tools for actual patient cases Toolkits: GEANT4, FLUKA, GATE, MCNPX Steps for full simulation of clinical cases: → Importing DICOM

- → Generating complex detector geometriy
- \rightarrow Production of sinograms for PET scanners

Control software written to allow movement on predefined path

OpenPET and dual-head dedicated PET systems have been simulated \rightarrow Spatial resolution and reconstruction ability correspond to real clinical proton irradiation

simulation of β^+ activity map with GATE

simulation of realistic full-ring PET and image reconstruction

The ENVISION project is cofunded by the European Commission under FP7 Grant Agreement No. 241851

